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1 Introduction and Basic Notions

1.1 Motivation

Perhaps the simplest way to construct a new manifold out of ones you are familiar with is to simply take
two of your favorite manifolds and then consider their Cartesian product. Let’s you start with two smooth
manifolds X and Y of dimension n and m respectively, then it’s not difficult to give X × Y the structure
of smooth n + m dimensional manifold. Furthermore, understanding the differential topology of this new
product manifold often comes down to just understanding each factor individually. For example, tangent
spaces and differentials split over product manifolds in exactly the way you would want, namely

T(x,y)(X × Y ) ≃ TxX × TyY

and if we have smooth maps f : X → A and g : Y → B, then

d(f × g)(x,y) = dfx × dgy.

To define manifolds, we fix some space we have a good understanding of (Euclidean space), and consider
other spaces which may be globally quite complicated, but at least locally look like the space we are familiar
with. Embracing this philosophy, we might take the next step and fix two spaces B and F , and then consider
the class of spaces which “locally look like B × F .” Making this idea precise leads us to the topological
notion of a fiber bundle.

1.2 The Basic Setup

Definition 1.1. A fiber bundle with base space B, total space E, and model fiber F , is a triple of topological
spaces (E,B, F ) together with a continuous surjection π : E → B such that
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1. The fibers π−1(x) are homeomorphic to F for all x ∈ X.

2. For all x ∈ X, there exists a trivializing neighborhood U containing x and a homeomorphism
h : π−1(U) → U × F such that the diagram

π−1(U)

π

��

h // U × F

pU

yy
U

commutes, where pU : U × F → U is projection onto the first coordinate.

We say that the fiber bundle E is trivial if it is just homeomorphic to the product B × F . If instead of
spaces and continuous maps we work with manifolds and smooth maps, we recover the notion of a smooth fiber
bundle. From here on out we will primarily be working in the smooth setting. In the study of vector bundles,
we only consider smooth bundles whose fibers are vector spaces. Although vector spaces are the simplest
possible type of manifold, the theory of vector bundles is quite vast and has wide ranging applications across
mathematics.

Definition 1.2. A smooth vector bundle is a smooth fiber bundle π : E → B such that all of the fibers
F = π−1(b) have the structure of an R-vector space in a way that is compatible with the local trivialization
condition. In particular, we require that every point b ∈ B has a locally trivializing neighborhood U ⊂ B
such that there is a diffeomorphism

g : U × Rdimπ−1(b) → π−1(U)

so that g−1 satisfies part 2 of Definition 1.1 and for which the map g(x, ·) : Rdimπ−1(x) → π−1(x) is a linear
isomorphism for all x ∈ U .

Note that in this definition we don’t require all the fibers to be diffeomorphic (be the same dimension).
However, the dimension of the fiber is a continuous integer valued function on B, so it will be constant on
connected components. We will primarily be focused on the case of connected base spaces so we will usually
just assume all the fibers are vector spaces of the same dimension. A vector bundle where all the fibers have
the same dimension k is referred to as a rank k vector bundle. We also often refer to local trivializations as
local coordinates on the vector bundle.

Definition 1.3. Let π : E → B and π′ : E′ → B′ be two smooth vector bundles. A vector bundle
(homo)morphism from (E,B) to (E′, B′) is a pair of smooth maps f : E → E′ and g : B → B′ such that
the diagram

E E′

B B′

f

π π′

g

commutes and for all b ∈ B the map f |π−1(b) : π
−1(b) → π′−1

(g(b)) is linear. We say that a vector bundle
morphism is a vector bundle isomorphism if it has an inverse which is also a vector bundle morphism and
we say that two vector bundles are isomorphic if there exists a vector bundle isomorphism between them.

Remark 1.4. If we fix a base manifold M , the collection of vector bundles over M equipped with vector
bundle morphisms forms a category. We will say more about this later when we state the smooth version of
the Serre-Swan Theorem.

Definition 1.5. Let π : E → B be a smooth vector bundle. A (cross-)section of (E,B) is a smooth map
s : B → E such that s(b) ∈ π−1(b) for all b ∈ B. We say a section is nowhere zero or non-vanishing if s(b)
is not the zero vector in π−1(b) for all b ∈ B. As we will see later, whether a bundle admits a non-vanishing
section reveals a lot about its topology.
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Definition 1.6. (Pullback Bundles) Let π : E → B be a vector bundle and let f : B̃ → B be a smooth
map from some other manifold B̃. We can pull the bundle E over B back along f to a bundle Ẽ over B̃ as
follows: Let Ẽ be the subset of B̃ × E consisting of pairs (b̃, e) where f(b̃) = π(e). Define π̃ : Ẽ → B̃ by

π̃(b̃, e) = b̃. Let f̂ : Ẽ → E be the map f̂(b̃, e) = e. We can equip the fibers π̃−1(b̃) with the structure of a

vector space so that the map f̂ restricted to the fiber is a vector space isomorphism to the fiber π−1(f(b̃)).
To show that f̃ : Ẽ → B̃ is a vector bundle we need local trivializations. Suppose that U is a trivial

neighborhood in B with trivializing diffeomorphism h : U × Rn → π−1(U). Let Ũ = f−1(U) ⊂ B̃ and let
h̃ : Ũ × Rn → π̃−1(Ũ) be given by

h̃(b̃, x) = (b̃, h(f(b̃), x)).

The collection of these h̃’s provide local coordinates to show that π̃ : Ẽ → B̃ is indeed a smooth vector
bundle. We will denote this bundle as f∗(E) and call it the pullback bundle.

Proposition 1.7. Let π : E → B be a vector bundle and let f : X → B be a smooth map. Then, f∗(E) is
a bundle on X such that f is part of a bundle homomorphism that maps fibers isomorphically onto fibers.
Furthermore, any other bundle on X with this property must be isomorphic to f∗(E).

Proof. See [1]

Definition 1.8. (Restricting Bundles) Let π : E → B be a vector bundle and let C ⊂ B be a submanifold.
We can restrict the bundle π to the sub-manifold C by taking the pullback bundle along the inclusion map
ι : C ↪−→ B.

Definition 1.9. (Sub-Bundles) Let π : E → B and π′ : E′ → B be vector bundles such that E′ ⊂ E and
(π′)−1(b) is a vector subspace of π−1(b) for all b ∈ B. Then, we say that E′ is a sub-bundle of E.

Definition 1.10. (Product Bundles) If π1 : E1 → B1 and π2 : E2 → B2 are vector bundles then we can
form a product bundle π1 × π2 : E1 × E2 → B1 ×B2 in the obvious way.

Definition 1.11. (Quotient Bundles) Suppose E′ is a sub-bundle of E over a space B. Then, we can form
the quotient bundle E/E′ where the fibers are the quotient vector spaces π−1(b)/(π′)−1(b) for all b ∈ B.

1.3 Transition Maps

In order to establish the most useful examples and constructions involving vector bundles, it is necessary
to establish some theory about how to easily construct bundles without having to appeal to the original
definition every time.

Definition 1.12. Let π : E → B be a vector bundle and let U, V ⊂ B be two trivial neighborhoods with
non-empty intersection and trivializing diffeomorphisms ϕU : π−1(U) → U ×Rk and ϕV : π−1(V ) → V ×Rk.
We then get a diffeomorphism

ϕU ◦ ϕ−1
V : (U ∩ V )× Rk → (U ∩ V )× Rk.

For each x ∈ U ∩ V , the map ϕU ◦ ϕ−1
V induces a linear isomorphism gUV (x) : {x} × Rk → {x} × Rk. This

gives a smooth map gUV : U ∩ V → GLk(R) which is called the transition function.

Remark 1.13. The group GLk(R) in the previous definition is an example of the more general notion of a
structure group of a fiber bundle.

Proposition 1.14. Let gUV be as in the previous definition. Let W be a third open subset of B such that
U ∩ V ∩W is non-empty. Then,

1. gUV (x) · gV U (x) = IdRk for all x ∈ U ∩ V .

2. gUV (x) · gVW (x) · gWU (x) = gUW (x) for all x ∈ U ∩ V ∩W .
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Theorem 1.15. Let B be a manifold with an open cover {Uα}α∈A and a collection of smooth functions
gαβ : Uα∩Uβ → GLk(R) for every α, β ∈ A such that the collection of functions {gαβ} satisfies the identities
of Proposition 1.14. Then, there exists a unique rank k vector bundle π : E → B with {Uα} a collection of
trivial neighborhoods with transition functions {gαβ}.

Proof. We present a brief proof that skips some details. As a topological space, define E to be the set⊔
α∈A

Uα × Rk

modulo the relation that
(x, v) ∈ Uα × Rk ∼ (x, gαβ(v)) ∈ Uβ × Rk.

Because B already carries the structure of a smooth manifold, the inclusion maps

Uα × Rk ↪−→ E

can be used to provide local parametrizations of E. The transition maps for these local parametrizations will
be smooth because the transition maps for B are already known to be smooth. This gives E the structure
of a smooth manifold. We also have a well defined projection map π : E → B where π([x, v]) = x. The fact
that {gαβ} satisfies the identities of Proposition 1.14 guarantees that π : E → B is indeed a smooth vector
bundle.

To show uniqueness, suppose π̃ : Ẽ → B is a smooth vector bundle where {Uα} is a collection of
trivial neighborhoods with transition functions {gαβ}. For each Uα, there is a trivializing diffeomorphism

h̃α : π̃−1(Uα) → Uα × Rk. We can define a set map f : Ẽ → E by setting f(x) = [h̃α(x)] where x ∈ Uα and
[h̃α(x)] is the equivalence class of h̃α(x) in E. This map is well defined, independent of the choice of Uα, and
bijective because E and Ẽ have the same transition maps. The smooth structure on E is defined so that the
inclusions Uα×Rk → E are smooth. On each π̃−1(Uα), f is given by a diffeomorphism followed by a smooth
map and is thus smooth on these neighborhoods. Because π̃ is a surjection and {Uα} is an open cover of B,
this shows that f is actually smooth on all of Ẽ. The collection of diffeomorphisms h̃−1

α : Uα×Rk → π̃−1(Uα)
defines a well defined smooth map out of

⊔
α Uα ×Rk into Ẽ. Because the transition functions are the same

for Ẽ and E, this smooth map descends to a well-defined map E → Ẽ which is exactly f−1. Since E is a
quotient manifold of

⊔
α Uα × Rk, f−1 is thus smooth and therefore f is a diffeomorphism. It also follows

straightforwardly from our definition of f that f and f−1 are bundle morphisms. Therefore, E is isomorphic
to Ẽ as desired.

Often times we will construct vector bundles by specifying an open cover {Uα} of B on which we declare
the bundle to be trivial, and then defining transition functions which satisfy the identities of Proposition
1.14. This theorem tells us that this construction is a well defined method for defining vector bundles. We
will use this method extensively in the next section to construct a plethora of useful examples of vector
bundles.

1.4 Some Key Examples

As we will see later, any vector bundle over a contractible base space is trivial. Therefore, any coordinate
neighborhood on the base space of a vector bundle will provide a trivializing neighborhood for that bundle.
Therefore, to specify a bundle we usually define transition functions for an atlas of the base space. We will
not verify it explicitly but straightforward computations show that all the transition maps we discuss satisfy
the identities of Proposition 1.14.

Example 1. (Tangent Bundle) Let M be a smooth manifold of dimension n. We construct a rank n bundle
TM over M where the fiber at each point p ∈ M is the vector space TpM . Let {(Uα, ϕα)} be a cover of M
by open neighborhoods Uα with local parametrization diffeomorphisms ϕα : Rn → Uα. We construct TM
as a bundle using Theorem 1.15 by setting the transition maps gαβ : Uα ∩ Uβ → GLn(R) to be

gαβ(x) = d(ϕ−1
β ◦ ϕα)ϕ−1

α (x).
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Example 2. (Dual Bundle) Let π : E → B be a vector bundle. We construct a new bundle π∗ : E∗ → B
where each fiber π∗−1(b) is the dual vector space of the fiber π−1(b). If {gαβ} are the transition functions
for E, we define the transition functions {g∗αβ} for E∗ by setting

g∗αβ(x) = (gαβ(x)
t)−1.

Example 3. (Direct Sum, Tensor Product, Exterior Product, Symmetric Product) Because the direct sum,
tensor product, symmetric product, and exterior product are operations on vector spaces which induce
operations on linear maps, we can perform these operations to existing transition maps to get new ones
defining new bundles. This procedure will be made more clear in the later section on continuous functors.

Example 4. (Normal Bundle) Let M ⊂ Rk be an embedded submanifold. We can define a bundle NM
over M whose fibers are the orthogonal complement of TpM inside Rk. One way to construct this bundle is
to consider it as the quotient bundle TRk|M/TM .

1.5 Some Fundamental Theorems

The following is a short exposition of a very powerful theorem which will allow us to construct lots and lots
of vector bundles from familiar vector space operations such as the direct product, tensor product, exterior
product, and symmetric product.

1.5.1 Continuous Functor Constructions

Definition 1.16. Let V be the category of finite dimensional R-vector spaces with morphisms as linear
isomorphisms. A continuous (smooth) functor in k-variables is a covariant (or contravariant) functor T :
V × · · · ×V → V such that T (f1, . . . , fk) depends continuously (smoothly) on f1, . . . , fk. This is well defined
because hom(V,W ) has a canonical choice of smooth structure for all V,W ∈ V.

Example 5. Some key examples of smooth functors are:

1. The direct sum V ⊕W .

2. The tensor product V ⊗W .

3. The exterior product
∧k

(V ).

4. The symmetric product Symk(V ).

5. The dual space V ∗.

6. The hom functor which takes V,W to the vector space hom(V,W ).

Any operation on vector spaces which is a continuous functor can be performed on vector bundles to get
new unique well defined vector bundles. This is summed up in the following theorem.

Theorem 1.17. Let πi : Ei → B be a collection of k vector bundles with fibers F |ib := π−1
i (b). Let

T : V × · · · × V → V be a smooth functor in k variables. Define F |b = T (F |1b , . . . , F |kb ) and let

E =
⊔
b∈B

F |b.

Then, there exists a canonical topology and smooth structure on E which makes it into a vector bundle over
B with fibers F |b.

Proof. See [3]
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1.5.2 Serre-Swan

Definition 1.18. Let π : E → B be a vector bundle. Define Γ(E) to be the set of sections of s : B → E.

The set Γ(E) can naturally be given the structure of an R-vector space since the fibers are vector spaces.
However, we can not only scale sections by numbers but we can also scale them by smooth functions. For
f ∈ C∞(B) and s ∈ Γ(E), we can define a new section f · s ∈ Γ(E) by setting

f · s(b) = f(b)s(b)

for all b ∈ B. This operation in fact gives Γ(E) the structure of a C∞(B)-module.

Definition 1.19. Fix a base manifold M and let E,E′ be two bundles over M with a bundle morphism
f : E → E′. We get an induced map f∗ : Γ(E) → Γ(E′) by setting

f∗(s) = f ◦ s.

It turns out that this map is in fact a homomorphism of C∞(M)-modules.

Although the module Γ(E) will not be free in general, it will always be nice in that it will always be
finitely generated and projective.

Proposition 1.20. The operation Γ which takes vector bundles to their C∞(M)-module of sections is a
functor from the category of vector bundles over M to the category of C∞(M)-modules. Furthermore, Γ(E)
is always a finitely generated projective C∞(M) module.

The theory of vector bundles appears naturally in three main contexts: algebraic geometry, topology,
and the theory of smooth manifolds. Each of these contexts have their own version of a ”Serre-Swan” style
theorem which related vector bundles to modules over a ring of functions. We will state all three here to
show their similarities but we have really only established the terminology to state the smooth version.

Theorem 1.21. (Algebraic Version by Serre) If R is the coordinate ring of an affine algebraic variety X over
a field, then the category of finitely generated projective R modules is equivalent to the category of algebraic
vector bundles on X.

Theorem 1.22. (Topology Version by Swan) Let X be a compact Hausdorff space and let C(X) be the ring
of continuous functions f : X → k where k is either C, R, or the quaternions. Then, the category of finite
rank k-vector bundles on X is equivalent to the category of finitely generated projective C(X)-modules via
the section functor.

Theorem 1.23. (Smooth Version) Let M be a manifold. Then, the section functor Γ from the category
of finite rank vector bundles over M to the category of finitely generated projective C∞(M)-modules is an
equivalence of categories.

One interesting consequence of these theorems is a nice connection between the fact that any vector bundle
is a direct summand of a trivial bundle and the fact that every projective module is a direct summand of a
free module.

1.5.3 Homotopy Properties

In this section we will present some useful homotopy theoretic properties of vector bundles that will be useful
in the next section. Throughout the following we let I denote the standard unit interval I = [0, 1].

Proposition 1.24. Let π : E → B × [a, b] be a vector bundle. Then, E is trivial if and only if there is a
c ∈ (a, b) such that E restricted to X × [a, c] and E restricted to X × [c, d] are both trivial.

Proposition 1.25. For a bundle π : E → B × I there exists an open cover {Uα} of B such that the
restrictions of E to Uα × I are all trivial.
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Theorem 1.26. Let π : E → B × I be a vector bundle. Then, E restricted to B × {0} is isomorphic to E
restricted to B × {1}.

Theorem 1.27. Homotopic maps induced isomorphic pullback bundles.

Corollary 1.28. Every vector bundle over a contractible space is trivial.

2 Classifying Vector Bundles

2.1 The Clutching Construction

Because Sn can be covered by two charts whose intersection is homotopy equivalent to Sn−1 (open over-
lapping upper and lower hemispheres), specifying a rank k vector bundle on Sn amounts to specifying a
transition function f : Sn−1 → GLk(R). Such an f is called a clutching function. We denote the vector
bundle on Sn induced by a clutching function f as Ef .

Theorem 2.1. Let f, g : Sn−1 → GLk(R) be homotopic. Then Ef is isomorphic to Eg.

Proof. Let H : Sn−1 × [0, 1] → GLk(R) be a homotopy from f to g. Then, H will serve as a transition map
to determine a vector bundle EH on Sn−1 × [0, 1]. This vector bundle restricted to Sn−1 × {t} ≃ Sn−1 will
have clutching function H(·, t). In particular, EH restricted to Sn−1 × 0 will be Ef and EH restricted to
Sn−1 × 1 will be Hg. Therefore, by Theorem 1.26, Ef is isomorphic to Eg.

Theorem 2.2. A homotopy class of clutching functions [f ] : Sn−1 → GLk(C) determines a unique isomor-
phism class of rank k complex vector bundles on Sn.

Definition 2.3. An orientation on a vector bundle is a choice of orientation on all of the fibers so that the
local trivialization maps are orientation preserving with respect to the standard orientation on Rn.

The clutching functions for oriented bundles on Sn will be given by maps f : Sn−1 → GLk(R)+.

Theorem 2.4. A homotopy class of maps [f ] : Sn−1 → GLk(R)+ determines a unique isomorphism class
of oriented real vector bundles on Sn.

Corollary 2.5. Every complex vector bundle on S1 is trivial and for every rank k there are exactly two
isomorphism classes of rank k vector bundles on S1.

Proof. Homotopy classes of maps from a single point to a space exactly specify path connected components
of that space. The corollary follows from the previous two theorems and the fact that GLn(C) is path
connected while GLn(R) has two path components.

2.2 Classifying Vector Bundles on S2

The previous theorem tells us that classifying vector bundles on S2 amounts to classifying homotopy classes
of maps f : S1 → GLk(R). Luckily for us, the fundamental group gives us a nice classification of all such
maps. The theory of covering spaces and the fundamental group tells us that π1(GLk(R)+) = Z/2Z for all
k > 2 and π1(Gl2(R)+) = π1(S

1) = Z. Therefore, every real line bundle on S2 is trivial, there are countably
many isomorphism classes of rank 2 orientable bundles on S2, and there are exactly 2 isomorphism classes
of oriented rank k bundles on S2 for k > 2.
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