
DYNAMICS IN THE PLANE AND THE POINCARÉ-BENDIXSON THEOREM
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Abstract. In this paper we will discuss smooth dynamical systems in R2 and prove the Poincaré-Bendixson
Theorem. The Poincaré-Bendixson Theorem is a powerful and fundamental result which, under suitable

conditions, fully characterizes the long term behavior of smooth dynamical systems in the plane. We will

also present an application of the Poincaré-Bendixson theorem to a system of differential equations which
models the excitability of a neuron. Lastly, we will use the Poincaré-Bendixson Theorem to prove the

Brouwer-Fixed Point Theorem for convex subsets of R2.
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1. Introduction

Non-linear differential equations are needed to model phenomena in almost every quantitative field, such
as physics, chemistry, biology, epidemiology, and engineering. Although most non-linear dynamical systems
can not be solved analytically, there are a host of known techniques which can be used to obtain information
about what solutions look like. One particularly powerful technique for analyzing the long term limiting
behavior of a smooth dynamical system is Poincaré-Bendixson Theory. The Poincaré-Bendixson Theorem
alongside its related corollaries are especially useful for proving the existence of periodic solutions which
would be difficult to find as explicit solutions to a system of differential equations. Furthermore, the Poincaré-
Bendixson Theorem rules out the possibility of chaos for smooth two dimensional systems. The key ideas
of Poincaré-Bendixson Theory were introduced by Poincaré in the 1880’s, however the Poincaré-Bendixson
Theorem was not fully fleshed out and rigorously justified until it was proved by Ivar Bendixson in 1901 [1].

2. Preliminaries

Throughout this paper we will assume that the reader has some familiarity with the basics of topology
and analysis in Rn. Although many of the following definitions and lemmas are stated about Rn, we will be
primarily concerned with planar systems defined in R2. Capital letters will be used to denote vectors and
matrices while lower case letters will be used to denote real numbers.

Definition 2.1. A continuously differentiable function ϕ : R×Rn → Rn is a smooth dynamical system if it
satisfies the following conditions:

(1) For all X ∈ Rn, ϕ(0, X) = X.
(2) For all X ∈ Rn and t, s ∈ R, ϕ(t, ϕ(s,X)) = ϕ(t+ s,X).

We will adopt the conventional notation of writing ϕ(t,X) as ϕt(X). The function ϕ can be thought of as
outputting where in Rn the dynamical system goes after a time t starting with an initial condition X. The
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first condition states that if no time passes, then the system remains at the initial position X. The second
condition placed on ϕ says that starting the system at X and letting it run t + s units of time is the same
as first running it s units of time from X and then t units of time starting from ϕ(s,X).

We will be concerned with smooth dynamical systems as solutions to systems of autonomous first order
differential equations in the plane. These are differential equations of the form

X ′ = F (X),

where F : R2 → R2 is a time independent C1 vector field.
Solutions to these types of systems can be thought of as curves in R2 which are always tangent to the

vector field F . More precisely, they are functions X : I → R, where I ⊂ R is an interval, such that
d
dtX(t) = F (X(t)) for all t ∈ I. Whether such solutions exist or are unique is summarized in the following
fundamental theorem.

Theorem 2.2 (Existence and Uniqueness). Let F : Rn → Rn be continuously differentiable. Consider the
initial value problem X ′ = F (X) and X(0) = X0, where X0 ∈ Rn. Then, there exists a real number a > 0
and a unique function X : (−a, a)→ Rn which solves this initial value problem.

Proof. A detailed and thorough treatment of this theorem can be found in Chapter 17 of [2]. �

Given a C1 autonomous system X ′ = F (X), the associated smooth dynamical system is the function
ϕt(Y ) which outputs the solution to the initial value problem X(0) = Y , evaluated at time t. We will also
refer to ϕt(Y ) as the solution of the autonomous system through Y . The general function ϕt(Y ), which
depends on the initial condition Y, is also called the flow of the system X ′ = F (X).

Theorem 2.3 (Smoothness of Flows). Let F : Rn → Rn be a C1 vector field. Let ϕ : R× Rn → Rn be the

flow of the autonomous system X ′ = F (X). Then, ϕt(X) is C1, i.e. ∂ϕ
∂X and ∂ϕ

∂t exist and are continuous.

Proof. A full proof of this theorem can be found on page 402 of [2]. �

The smoothness of flows is important because it means that flows of C1 autonomous systems of differential
equations are smooth dynamical systems according to Definition 1.1. It also guarantees that ϕ is continuous
with respect to initial conditions.

Definition 2.4. An equilibrium point of the autonomous system X ′ = F (X) is a point Y ∈ Rn for which
F (Y ) = 0.

Definition 2.5. Suppose Y ∈ Rn is not an equilibrium point of the autonomous system X ′ = F (X). If
there exists a strictly positive real number τ such that ϕτ (Y ) = Y , then ϕt(Y ) is called a periodic solution
or closed orbit. The smallest τ > 0 for which ϕτ (Y ) = Y is the period of the closed orbit.

It is worth noting that for a closed orbit, by Definition 1.1,

ϕτ+t(Y ) = ϕt(ϕτ (Y ))

= ϕt(Y )

for any t ∈ R.

Definition 2.6. A set A ⊂ Rn is positively invariant if for all X ∈ A, ϕt(X) ∈ A for all t > 0. Similarly,
A is negatively invariant if for all X ∈ A, ϕt(X) ∈ A for all t < 0. A set A is invariant if for all X ∈ A,
ϕt(X) ∈ A for all t ∈ R.

Definition 2.7. The ω-limit set of ϕt(X) is the set of points Y ∈ Rn for which there exists a strictly
increasing sequence (tn)∞n=0, such that lim

n→∞
tn =∞ and lim

n→∞
ϕtn(X) = Y . We often denote the ω-limit set

of the solution through X as just ω(X).
The α-limit set of ϕt(X) is the set of points Y ∈ Rn for which there exists a strictly decreasing sequence

(tn)∞n=0, such that lim
n→∞

tn = −∞ and lim
n→∞

ϕtn(X) = Y . Similarly, we will denote the α-limit set of the

solution through X as just α(X).

Remark 2.8. All periodic orbits are invariant. Furthermore, if γ is a closed orbit and X ∈ γ, then ω(X)
and α(X) are equal to γ.
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We will now prove some useful lemmas about α and ω-limit sets. For the following lemmas we will be
assuming that ϕt(X) is the flow of C1 autonomous system in Rn.

Lemma 2.9. Suppose that Y and Z both lie on the same solution curve of the system X ′ = F (X). Then,
ω(Z) = ω(Y ) and α(Z) = α(Y ).

Proof. Suppose that Y and Z both lie on the same solution curve of the system X ′ = F (X). Let X ∈ ω(Y ).
Then, there exists a strictly increasing divergent sequence (tn)∞n=1 such that lim

n→∞
ϕtn(Y ) = X. Because Y

and Z are on the same solution curve, there exists a real number s such that ϕs(Y ) = Z. Moreover, there
exists a natural number m such that tm > s. For all k ≥ m,

ϕtk(Y ) = ϕ(tk−s+s)(Y )

= ϕ(tk−s)(ϕs(Y ))

= ϕ(tk−s)(Z).

Therefore,

lim
n→∞

ϕ(tn−s)(Z) = lim
n→∞

ϕtn(Y )

= X.

Thus, ω(Y ) ⊂ ω(Z). The same reasoning can be used to show that ω(Z) ⊂ ω(Y ). Therefore, ω(Y ) = ω(Z).
Similar reasoning can be used to show that α(Y ) = α(Z). �

Lemma 2.10. For all X ∈ Rn, ω(X) and α(X) are invariant sets.

Proof. Let Y ∈ ω(X). Let (tn) be an increasing divergent sequence such that lim
n→∞

ϕtn(X) = Y . Let s ∈ R
be arbitrary. By Theorem 2.3, ϕ is continuous in all of its variables. Therefore,

lim
n→∞

ϕ(s+tn)(X) = lim
n→∞

ϕs(ϕtn(X))

= ϕs( lim
n→∞

ϕtn(X))

= ϕs(Y ).

Since (s+ tn) is strictly increasing and divergent, by Definition 2.7, ϕs(Y ) ∈ ω(X). Because s was arbitrary,
ω(X) is invariant by Definition 2.6. �

Lemma 2.11. The sets ω(X) and α(X) are closed.

Proof. Let Y ∈ ω(X). Let B(r, Y ) denote the open ball of radius r centered at Y . For every n ∈ N,
B( 1

n , Y ) ∩ ω(X) is nonempty. We can then find a sequence, (Yn), in ω(X) such that for all n ∈ N,

‖Yn − Y ‖ < 1
n . Because (Yn) is in ω(X), by Definition 2.7, for every m ∈ N there exists an arbitrarily large

tm ∈ R such that ‖ϕtm(X) − Ym‖ < 1
m . We can then construct a sequence (tk) such that for all k ∈ N,

‖ϕtk(X)− Yk‖ < 1
k and tk+1 > tk + 1.

Thus, for all k,

‖Y − ϕtk(X)‖ ≤ ‖Y − Yk‖+ ‖Yk − ϕtk(X)‖ ≤ 2

k
.

We have thus found an increasing divergent sequence (tk) such that lim
k→∞

ϕtk(X) = Y . Therefore, by

Definition 2.7, Y ∈ ω(X). Thus, ω(X) is closed. Similar reasoning can be used to show that α(X) is also
closed. �

Lemma 2.12. If A is a closed positively invariant set and X ∈ A, then ω(X) ⊂ A. Similarly, if B is a
closed negatively invariant set and Y ∈ B, then α(Y ) ⊂ B. Furthermore, if C is a closed invariant set, then
C contains the ω and α-limit sets of every point in it.

Proof. Suppose that A ⊂ Rn is closed and positively invariant. Let X ∈ A. Let P ∈ ω(X). Then, there
exists a strictly increasing divergent sequence (tn)∞n=1 such that lim

n→∞
ϕtn(X) = P . Because (tn)∞n=1 diverges

to positive infinity, there exists a natural number m such that tn > 0 for all n ≥ m. Since A is positively
invariant, ϕtn(X) ∈ A for all tn ∈ (tn)∞n=m. Because only finitely many terms have been removed from the
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sequence, (ϕtn(X))∞n=m still converges to P . Therefore, since A is closed and ϕtn(X) ∈ A for all n ≥ m, it
follows that P ∈ A. Since P was an arbitrary member of ω(X), ω(X) ⊂ A.

A very similar argument with the direction of time reversed can be used to show that if B ⊂ Rn is
closed and negatively invariant and Y ∈ B, then α(Y ) ⊂ B. Because invariant sets are both positively and
negatively invariant, both of the previous results hold. Therefore, if C is closed and invariant and Z ∈ C,
then ω(Z) ⊂ C and α(Z) ⊂ C. �

Lemma 2.13. The set ω(X) is compact if, and only if there exists an s ∈ R such that the set {ϕt(X) | t ≥ s}
is bounded. Similarly, α(X) is compact if, and only if there exists an s ∈ R such that the set {ϕt(X) | t ≤ s}
is bounded.

Proof. Suppose that X ∈ Rn such that there exists a real number s such that the set {ϕt(X) | t ≥ s} is
bounded by r ∈ R. Then, the closed disk of radius r is positively invariant for the point ϕs(X). By
Lemma 2.12, ω(ϕs(X)) is a subset of the closed disk of radius r. Because ϕs(X) is on the same solution
curve as X, by Lemma 2.9, ω(ϕs(X)) = ω(X). Therefore, ω(X) is bounded. By Lemma 2.11 ω(X) is closed.
Thus, by the Heine-Borel Theorem, ω(X) is compact.

Suppose now that Y ∈ Rn such that ω(Y ) is compact. Then ω(Y ) is bounded. Therefore, there exists an
a ∈ R such that ω(Y ) is bounded by the open ball of radius a. Let Ba denote this ball of radius a. Suppose,
for the sake of contradiction, that for every real number s, the set {ϕt(Y ) | t ≥ s} is unbounded.

Let P ∈ ω(Y ). By Definition 2.7, there exists an increasing divergent sequence (tn) such that
lim
n→∞

ϕ(tn)(Y ) = P . Because Ba is an open set containing P, there exist infinitely many ϕtn(Y ) in Ba. Since

{ϕt(Y ) | t ≥ tn} is unbounded for all n ∈ N, ϕt(Y ) must cross the boundary of Ba infinitely many times
(see Figure 1). Let (ϕak(Y )) be a sequence in the boundary of Ba such that (ak) is increasing and divergent.
Because the boundary of Ba is bounded and closed, there exists a subsequence of (ak) which converges
to a point Q ∈ ∂Ba. Then, Q ∈ ω(X). This is a contradiction since ω(Y ) ⊂ Ba and Ba ∩ ∂Ba = Ø.
We have therefore proven by contradiction that if ω(Y ) is compact, then there exists an s ∈ R such that
{ϕt(Y ) | t ≥ s} is bounded. Similar reasoning can be used to show that α(Y ) is compact if, and only if there
exists an s ∈ R such that {ϕt(Y ) | t ≤ s} is bounded. �

Figure 1

We will now prove an important preliminary result about the topology of limit sets.

Lemma 2.14. If U and V are disjoint nonempty open subsets of Rn, then ∂U ∩ V = Ø and ∂V ∩ U = Ø.

Proof. Suppose, for the sake of contradiction, that there exists a P ∈ U such that P ∈ ∂V . Because U
is open, there exists an open neighborhood, N, of P such that N ⊂ U . Since P ∈ ∂V and N is an open
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neighborhood containing P , it follows that N ∩ V 6= Ø. This contradicts the fact that U and V are disjoint.
The same reasoning can be used to conclude that if P ∈ ∂U , then P /∈ V .

�

Theorem 2.15. For all X ∈ Rn, if ω(X) is compact, then ω(X) is nonempty and connected.

Proof. Suppose that for some X ∈ Rn, ω(X) is compact. Then, by Lemma 2.13, there exists an s ∈ R
such that {ϕt(X) | t ≥ s} is bounded. For all n ∈ N, let an = s + n. The sequence (an) is then strictly
increasing and divergent. Because an > s for all n, the sequence (ϕan(X)) is bounded. By the Bolzano-
Weierstrass Theorem, there exists an increasing divergent sequence (bn) which is a subsequence of (an) such
that (ϕbn(X)) converges to some point Q ∈ Rn. By Definition 2.7, Q ∈ ω(X). Thus, ω(X) is nonempty.

Suppose, for the sake of contradiction, that ω(X) is disconnected. Then, there exist disjoint open sets U
and V such that U ∩ ω(X) is nonempty, V ∩ ω(X) is nonempty, and

(U ∩ ω(X)) ∪ (V ∩ ω(X)) = ω(X).

Let Yu ∈ ω(X) ∩ U and let Yv ∈ ω(X) ∩ V . By Definition 2.7, there exist increasing divergent sequences
(sn) and (rn) such that lim

n→∞
ϕsn(X) = Yu and lim

n→∞
ϕrn(X) = Yv. Suppose that N ∈ N is sufficiently large

so that for all n ≥ N , ϕsn(X) ∈ U and ϕrn(X) ∈ V . We will now inductively define an increasing sequence
(tk). Let t1 = rN and let t2 = si where i ≥ N and si > rN . Such an si exists because (sn) is unbounded. In
general, if for an even i ∈ N, ti has been defined as an element of (sn), define ti+1 to be an element rj ∈ (rn)
such that j ≥ N and rj > ti. Similarly, if for an odd i ∈ N, ti has been defined as an element of (rn), define
ti+1 to be an element sj ∈ (sn) such that sj > ti and j ≥ N . The sequence (ϕtk(X))∞k=1 then alternates
between being in U and V . Since U and V are disjoint and ϕt(X) is continuous, we can choose a sequence
(τi) with ϕτi(X) ∈ Rn \ (U ∪ V ) and ti < τi < ti+1 for all i ∈ N. For instance, by Lemma 2.14, we could
choose τi to be in ∂U or ∂V . Therefore, for all i ∈ N, there exists a τi ∈ (ti, ti+1) such that ϕτi /∈ U and
ϕτi(X) /∈ V (see Figure 2).

Because, by Lemma 2.13, ϕt(X) is bounded for sufficiently large t, the sequence (ϕτn(X)) is bounded. In
particular, by the Bolzano-Weierstrass Theorem, there exists a subsequence, (qn), of (τn) such that (ϕqn(X))
converges to some point P ∈ Rn. Since (ϕqn(X)) is contained in the closed set Rn \ (U ∪V ), P is not in U or
V . By Definition 2.7, P ∈ ω(X). This contradicts the supposition that ω(X) ⊂ (U ∪ V ). We have therefore
proven that ω(X) is connected by contradiction. �

Figure 2

3. Why two dimensions?

Now that we have established some basic facts about smooth dynamics in Rn, it is time to turn our
attention to the plane. The Poincaré-Bendixson Theorem restricts how complicated ω and α limit sets in
the plane can be. The following lemmas, which are specific to the plane, show why limit sets in R2 must be
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relatively simple. In particular, since The Jordan Curve Theorem holds in R2, if a trajectory ever returns
near itself, it must spiral inward since it cannot cross itself. This spiraling behavior severely restricts the
possible limiting behavior of the trajectory.

Definition 3.1. Suppose that X ′ = F (X) is a first order autonomous system in R2. Suppose that X0 ∈ R2

is not an equilibrium point of the system. Let V be a unit vector based at X0 which is perpendicular to the
vector F (X0) based at X0. Define g : R→ R2 by g(z) = X0 + zV . Then, g(R) is a line in R2 which contains
X0 and is perpendicular to F (X0) based at X0. Such a line is called the transverse line at X0 (see Figure
3).

Because ϕ is continuous with respect to initial conditions and F (X0) 6= 0, there exists an open neigh-
borhood around X0 in L(X0) where F is not tangent to L(X0). Explicitly, there exists a sufficiently small
ε > 0 such that for all X ∈ L(X0) with ‖X −X0‖ < ε, F (X) is not tangent to L(X0). Furthermore, F (X)
points in the same direction away from L(X0) as F (X0) for all such X. Such a line segment centered at X0

is called a local section at X0.

Figure 3. A diagram of the transverse line L(X0) and a local section S based at X0. The
vector V is the unit vector based at X0 which is parallel to L(X0) and is used to parameterize
the transverse line. All of the vectors in the dotted box which are based at points in S all
point in the same direction away from L(X0) because S is a local section.
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Definition 3.2. A finite or infinite sequence A0, A1, A2, . . . is monotone along the solution ϕt(A0) if there
exists a non-negative increasing sequence t0, t1, t2, . . . such that ϕtn(A0) = An for all n. We say that a
sequence A0, A1, . . . in a local section S is monotone along S, if Ai is between Ai−1 and Ai+1 on S for all i.

Remark 3.3. A simple closed curve in R2 is a curve which does not intersect itself and which encloses an
area. Such curves are sometimes referred to as Jordan curves. Simple closed curves separate the plane into
two connected components: a bounded interior and an unbounded exterior. Although this fact may seem
trivial, proving it requires topological machinery far outside the scope of this paper. A proper treatment of
Jordan curves and the Jordan Curve Theorem can be found in Chapter 10 of [3]. We will denote the interior
and exterior of a simple closed curve γ as int(γ) and ext(γ) respectively (see Figure 4). It is worth noting
that all periodic orbits are simple closed curves.

Figure 4

Lemma 3.4. Suppose that X ′ = F (X) is a C1 autonomous system in R2. Let S be a local section and let
Y0, Y1, Y2, . . . be a sequence of points which lie on S and which are all on the same solution curve X(t). If
this sequence of points is monotone along X(t), then it is monotone along S.

Proof. Let Y0, Y1, . . . be a sequence of points which lie on a section S and which are monotone along a
solution curve X(t). Suppose, for the sake of contradiction, that there exists an i such that Yi+1 is between
Yi and Yi−1. Let C denote the segment of the curve X(t) which starts at Yi−1 and ends at Yi and let D
denote the line segment in S which connects Yi−1 and Yi. The union of C and D is then a simple closed
curve (see Figure 5). Furthermore, for all X ∈ D, F (X) points away from the interior of C ∪ D. Since
ϕt(Yi) cannot intersect C and cannot enter the interior of C ∪D through D, ϕt(Yi) remains in the exterior
of C ∪D for all t ≥ 0. Because Y0, Y1, . . . is monotone along X(t), there exists a positive s ∈ R such that
ϕs(Yi) = Yi+1. This implies that Yi+1 ∈ ext(C ∪D) which contradicts the fact that Yi+1 ∈ D. �

Lemma 3.5. If Y ∈ ω(X) or Y ∈ α(X) for some X ∈ R2, then ϕt(Y ) crosses any local section no more
than once.

Proof. Suppose that Y ∈ ω(X) and that ϕt(Y ) cross a local section S at two distinct points Y1 and Y2. Let
O1 and O2 be open neighborhoods of Y1 and Y2 which are disjoint. By Definition 2.7, there exist increasing
divergent sequences (tn) and (sn) such that lim

n→∞
ϕtn(X) = Y1 and lim

n→∞
ϕsn(X) = Y2. Thus, there exist

infinitely many arbitrarily large tn and sn such that ϕtn(X) ∈ O1 and ϕsn(X) ∈ O2. We can therefore find
a finite sequence

tn1
, sn2

, tn3

which is strictly increasing such that ϕtn1
(X), ϕtn3

(X) ∈ O1 and ϕsn2
(X) ∈ O2 (see Figure 6). The sequence

ϕtn1
(X), ϕsn2

(X), ϕtn3
(X)

is therefore monotone along X(t) but is not monotone along S. This contradicts Lemma 3.4. This argument
can be straightforwardly adapted in the case that Y ∈ α(X). We have thus shown that if Y is in a limit set,
then the solution through Y crosses any local section at no more than one point. �
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Figure 5

Figure 6

4. The Poincaré-Bendixson Theorem

Theorem 4.1 (Poincaré-Bendixson Theorem). Let X ′ = F (X) be a C1 autonomous system in R2. Suppose
that X ∈ R2 such that ω(X) is compact. If ω(X) contains no equilibrium points, then ω(X) is a closed orbit.
Similarly, if α(X) is compact and contains no equilibrium points, then α(X) is a closed orbit.

Proof. Suppose that ω(X) is compact and contains no fixed points. By Lemma 2.13, ω(X) is nonempty. Let
P ∈ ω(X). Since ω-limit sets are closed and invariant, by Lemma 2.12, ω(P ) ⊂ ω(X). Furthermore, since
ω(P ) is a closed subset of a compact set, it is compact and thus nonempty by Lemma 2.13.

Let Q ∈ ω(P ). Because ω(P ) ⊂ ω(X) and ω(X) contains no equilibrium points, Q is not an equilibrium
point. We can then let S be a local section at Q. Let (tn) be an increasing divergent sequence such that

8



lim
n→∞

tn =∞ and lim
n→∞

ϕtn(P ) = Q. Let

G = {ϕt(V ) | V ∈ S and t ∈ [−a, a]}

where a > 0 is sufficiently small so that every trajectory which enters the set G eventually crosses S and
then exits the set G (see Figure 7). Such an a exists because F is continuous. Further justification for the
existence of the set G can be found in Chapter 10.2 of [2].

The set G is a connected set whose interior is an open neighborhood of Q. Since (ϕtn(P )) gets arbitrarily
close to Q, there exists some k ∈ N such that for all m ≥ k, ϕtm(P ) ∈ G. By the definition of G, there
exists a V ∈ S and an r ∈ (−a, a) such that ϕr(V ) = ϕtk(P ). By Definition 2.1, ϕtk−r(P ) = V . Moreover,
the trajectory ϕt(P ) leaves G at time tk − r + a. However, there must exist a time ti ∈ (tn) such that
ti > tk − r + a and ϕti(P ) ∈ G. Furthermore, by the definition of G, there exists an α ∈ [ti − a, ti + a] such
that ϕα(P ) ∈ S. Since P ∈ ω(X), by Lemma 3.5, ϕt(P ) only ever crosses S at V . Therefore, ϕα(P ) = V .
Because

α ≥ ti − a > tk − r
and ϕα(P ) = ϕtk−r(P ), by Definition 2.5, P lies on a closed orbit.

Figure 7

We have thus shown that every P ∈ ω(X) lies on a closed orbit ΓP . Furthermore, by Remark 2.8 and
Lemma 2.12, for all P ∈ ω(X), ΓP ⊂ ω(X).

Let Y ∈ ω(X). Suppose, for the sake of contradiction, that for all ε > 0,

{X ∈ R2 | d(X,ΓY ) < ε} ∩ (ω(X) \ ΓY ) 6= Ø,

where d(X,ΓY ) denotes the distance between the point X and the set ΓY . Since ΓY is compact, F is
uniformly continuous on ΓY . In particular, there exists a sufficiently small δ > 0 such that for all Z ∈ ΓY ,
there is a section centered at Z with length 2δ. Let T be an element of the set{

X ∈ R2 | d(X,ΓY ) <
δ

2

}
∩ (ω(X) \ ΓY ).

Then there exists a section SZ centered at a point Z ∈ ΓY which contains T . Since T ∈ ω(X), T lies on
a periodic orbit ΓT which is a subset of ω(X) (see Figure 8). Let (ak) be an increasing divergent sequence
such that (ϕak(X)) approaches Z. Likewise, let (bk) be an increasing divergent sequence such that (ϕbk(X))
converges to T . Because (ϕak(X)) converges to Z, there exist real numbers c1 and c2 such that c1 < c2 and
ϕc1(X), ϕc2(X) ∈ S with ϕc2(X) closer to Z. Furthermore, since (bk) is unbounded, there exists a c3 ∈ R
such that c1 < c2 < c3 and ϕc3(X) ∈ S with

‖ϕc3(X)− T‖ < ‖ϕc1(X)− T‖.
9



All three points, ϕc1(X), ϕc2(X), and ϕc3(X) must be between T and Z since ϕt(X) cannot cross ΓT or ΓY
(see Figure 9). The finite sequence ϕc1(X), ϕc2(X), ϕc3(X) is then monotone along the solution ϕt(X) and
not monotone along the section S. This contradicts Lemma 3.4. Therefore, there exists an ε > 0 such that

{X ∈ R2 | d(X,ΓY ) < ε} ∩ (ω(X) \ ΓY ) = Ø.

Suppose that ω(X) 6= ΓY . Let A = {X ∈ R2 | d(X,ΓY ) < ε
2} and let B denote the interior of the

complement of A. In particular, A and B are disjoint open sets such that ω(X) ⊂ A ∪ B. Therefore, ω(X)
is disconnected. However, this contradicts Lemma 2.15. Thus, ω(X) = ΓY . We have therefore proven that
if ω(X) is compact and contains no equilibrium points, then ω(X) is a single periodic orbit.

Figure 8

Figure 9

�

10



Definition 4.2. A periodic orbit γ is a limit cycle if there exists an X which is not in γ such that γ ⊂ ω(X)
or γ ⊂ α(X).

Corollary 4.3. Suppose that γ is a closed orbit such that X /∈ γ and ω(X) = γ. Then, there exists an open
neighborhood U of X such that for all Y ∈ U , ω(Y ) = γ. Furthermore, the set {X | ω(X) = γ} \ γ is open.

Proof. A proof and thorough explanation of this corollary can be found in Chapter 10 of [2]. �

Corollary 4.4. If U is the interior of a closed orbit γ, then U contains an equilibrium point.

Proof. The following proof is a modified version of the proof given in Chapter 10 of [2]. Suppose, for the
sake of contradiction, that U is an open set which is the interior of a periodic orbit γ such that U contains
no equilibrium points or limit cycles. The set U ∪ γ is compact and invariant and therefore contains the ω
and α limit sets of every one of its elements. By The Poincaré-Bendixson Theorem, the ω and α limit sets
of the points of U ∪ γ must be γ since there are no other equilibrium points or closed orbits. Let X ∈ U ∪ γ
and let Y ∈ γ. Let S be a section at Y . Then, there exist sequences (an) and (bn) with lim

n→∞
an = ∞ and

lim
n→∞

bn = −∞ such that

lim
n→∞

ϕan(X) = lim
n→∞

ϕbn(X) = Y,

with ϕan(X), ϕbn(X) ∈ S for all n. However, this contradicts the monotonicity result of Lemma 3.4. We
have thus shown that U must contain either an equilibrium point or a limit cycle.

Now suppose that U contains no equilibrium points. If U contains a finite number of closed orbits, then
there exists a closed orbit Γ ⊂ U which encloses the least area. The interior of Γ must then contain an
equilibrium point, however this contradicts our assumption that U does not contain any equilibrium points.

Now suppose that U contains infinitely many limit cycles. Let a be the infimum of the set of areas enclosed
by periodic orbits in U . Let (ΓN ) be a sequence of periodic orbits in γ ∪ U such that the sequence (an)
of areas enclosed by each Γn satisfies lim

n→∞
an = a. Let (Qn) be a sequence of points such that for all n,

Qn ∈ Γn. Since (Qn) is contained in a compact set, there is a subsequence (Tn) which converges to a point
T ∈ U ∪γ. Suppose that T does not lie on a closed orbit. By The Poincaré-Bendixson Theorem, the solution
through T must approach a limit cycle. By Corollary 4.3, there exists some Tm which also approaches that
same limit cycle. This is a contradiction, as Tm already lies on a closed orbit and therefore cannot approach
a limit cycle. Therefore, T must lie on a closed orbit.

This implies that the sequence (Γn) approaches a closed orbit ΓT which encloses the minimum area a.
Thus, a is non-zero and there cannot be any more closed orbits in the interior of ΓT . This is a contradiction,
as we have already showed that the interior of closed orbits must contain either a periodic orbit or an
equilibrium point. We have therefore proven that the interior of γ must contain an equilibrium point by
contradiction. �

5. Application in Neuroscience

We will now use the Poincaré-Bendixson Theorem to analyze a system of differential equations used to
model the excitability of a single neuron. The two dimensional system that we will discuss is due to Fitzugh
and Nagumo and it is a reduction of the much more complex four dimensional Hodgkin-Huxley model [4].
The Fitzhugh-Nagumo model is given by the following pair of ordinary first order differential equations:

dx

dt
= x− 1

3
x3 − y + I(5.1)

dy

dt
= ε(bx− y + a)(5.2)

where ε << 1, 0 < a < 1, and b > 1. We will denote the vector field

[
x′

y′

]
as V (x, y). The function x(t)

represents the membrane potential of the neuron and the function y(t) represents the excitability of the
neuron. The parameters a, b, and ε represent fixed physical and biological properties of the cell and I is the
current being put into the neuron. A more detailed mathematical analysis of this model can be found in [4].
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In order to simplify our analysis we will only examine a single interesting case and fix our parameters in the
following way:

ε = 0.08

a = 0.3

b = 6

I = 1.

In this case there is a single equilibrium point at approximately (0.14, 1.14) which is unstable and a source.
Justification for why this equilibrium is an unstable source can be found in Chapter II of [4].

We will now use the Poincaré-Bendixson Theorem to find a limit cycle of the system. In order to prove
the existence of a limit cycle, we will construct a closed positively invariant region in the plane. Because the
equilibrium point is a source, we can find a small open neighborhood O of the equilibrium point such that
on ∂O, the vector field V points away from O. Let L denote the line defined by the equation y′ = 0. Let A
be the point where the vertical line x = 20 intersects L and let B denote the point where the vertical line
x = −20 intersects L. Let K denote the filled in closed rectangle whose diagonal is the segment connecting
A to B. We can also safely assume that O is sufficiently small to be contained within the interior of K.

We will now show that K \ O is a positively invariant set. The line L divides the plane into two regions
in which y′ > 0 in one and y′ < 0 in the other (see Figure 11). Because the upper boundary of K is
in the region where y′ < 0 and the lower boundary is in the region where y′ > 0, V points towards the
interior of K on the upper and lower line segments bounding it. For all points (x, y) on the boundary of
K, y ∈ (−121, 121). Therefore, x′ < 0 on the right hand edge of K and x′ > 0 on the left hand boundary
of K. Thus on the boundary of K and on the boundary of O, V points towards the interior of K \ O. In
particular, any trajectory that starts within K \O can not leave the set. Therefore, by Definition 2.6, K \O
is positively invariant.

Let X ∈ K \O. Since K \O is closed and positively invariant, by Lemma 2.12, ω(X) ⊂ K \O. This means
that ω(X) is bounded and does not contain an equilibrium point. In particular, by the Poincaré-Bendixson
Theorem, ω(X) must be a closed orbit. We have thus proven the existence of a closed orbit, which would
have been difficult to find as an explicit solution to (5.1) and (5.2). Furthermore, this closed orbit is a limit
cycle that every point in K \O spirals towards (see Figure 10).

Figure 10. Vector field plot of the Fitzhugh-Nagumo Model with ε = 0.08, a = 0.3, b = 6,
and I = 1.
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Figure 11. A plot of the region K. The purple line is the line given by the equation y′ = 0.
The blue shaded region is where y′ > 0 and the grey shaded region is where y′ < 0.

6. The Brouwer Fixed Point Theorem

We will now use the Poincaré-Bendixson Theorem to prove the generalized Brouwer Fixed Point Theorem
in two dimensions. The following proof is a modified and generalized version of the proof given in [5].

Theorem 6.1 (Brouwer Fixed Point Theorem). Suppose that A ⊂ R2 is a convex and compact set and that
F : A→ A is continuous. Then, there exists an X ∈ A such that F (X) = X.

Proof. Let A ⊂ R2 be convex and compact and let F : A→ A be continuous, where

F (x, y) =

[
f(x, y)
g(x, y)

]
.

Let ε > 0. By the Weierstrass-Approximation Theorem, there exist polynomials p(x, y) and q(x, y) such that∥∥∥∥[f(x, y)
g(x, y)

]
−

[
p(x, y)
q(x, y)

]∥∥∥∥ < ε

for all (x, y) ∈ A. Suppose that F does not have any fixed points on the boundary of A. Let Y ∈ ∂A. The
vector which points from Y to F (Y ) has a non-zero length and, since A is convex, points into A (see Figure
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12). We can also assume that our polynomial approximation is close enough so that for all Y ∈ ∂A, the

vector from Y to

[
p(Y )
q(Y )

]
is never 0 and points into the set A. In particular, the vector field

G(x, y) =

[
p(x, y)
q(x, y)

]
−
[
x
y

]
points into A at every point on the boundary of A. Therefore, A is a positively invariant set by Definition
2.6. By The Poincaré-Bendixson Theorem, A must either contain an equilibrium point or a closed orbit
γ. Note that we can apply the Poincaré-Bendixson Theorem because G is C1. In the case that A has a
periodic orbit γ, the interior of γ must have an equilibrium point by Corollary 4.4. Therefore, A contains an
equilibrium point of G in all cases. Let (a, b) denote this equilibrium point. Thus, p(a, b) = a and q(a, b) = b.
In particular, ∥∥∥∥[f(a, b)

g(a, b)

]
−
[
a
b

]∥∥∥∥ =

∥∥∥∥[f(a, b)
g(a, b)

]
−

[
p(a, b)
q(a, b)

]∥∥∥∥ < ε.

We have therefore proven that for all ε > 0, there exists a point P ∈ A such that ‖F (P )− P‖ < ε.

Figure 12

Let (Yn) be a sequence of points in A such that for all n ∈ N, ‖F (Yn)− Yn‖ < 1
n . Since (Yn) is contained in

A, which is compact, there exists a subsequence, (Zn), of (Yn) which converges to a point Z ∈ A. By the
continuity of F ,

lim
n→∞

F (Zn) = F (Z).

Thus for every ε > 0, there exists a sufficiently large N ∈ N such that

‖F (Z)− Z‖ ≤ ‖F (Z)− ZN‖+ ‖ZN − Z‖
≤ ‖F (Z)− F (ZN )‖+ ‖F (ZN )− ZN‖+ ‖ZN − Z‖
< ε.

Therefore F (Z) = Z and Z is a fixed point of F . �

Acknowledgments

First and foremost I would like to thank my mentor Chloé Postel-Vinay for being incredibly patient,
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